Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wenguo Wang, Chengbing Ma, Feng Chen, Changneng Chen and Qiutian Liu*

State Key Laboratory of Structural Chemistry, FuJian Institute of Research on the Structure of Matter, Fuzhou, FuJian, 350002, People's Republic of China

Correspondence e-mail: Iqt@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.057$
$w R$ factor $=0.131$
Data-to-parameter ratio $=11.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraaqua(1,10-phenanthroline- N, N^{\prime})manganese(II) dinitrate

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$, was obtained from the reaction of benzoic acid, 1,10-phenanthroline and manganese nitrate tetrahydrate. The Mn atom is coordinated in a distorted octahedral arrangement by four water molecules and two N atoms from the phenanthroline ligand.

Comment

There are three manganese enzymes containing a mononuclear manganese site, viz. superoxide dismutase, peroxidase and dioxygenase, which participate in redox changes in the respective areas of biology (Law et al., 1999). Carboxylatobridged complexes containing 1,10-phenanthroline (phen) or bipyridine (bpy) are often employed to mimic the function and structure of these active sites, based on the knowledge that Mn centers in these enzymes are predominately coordinated by N, O donors from available amino acid side chains (Pecoraro \& Butler, 1986). Recently, we have reported a new example of a mononuclear manganese complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ $\left(\mathrm{SO}_{4}\right)(\mathrm{II})$, with only one phen ligand and sulfate as counterion (Ma et al., 2002). A similar complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{SO}_{4}\right)$, has also been reported (Zheng et al., 2000). The title complex, (I), contains the same cation as in complex (II) and two $\mathrm{NO}_{3}{ }^{-}$counter-ions, exhibiting similar structural features to (II).

The manganese atom is coordinated by four O atoms from four water molecules and two N atoms from one phenanthroline ligand, forming a distorted octahedron (Fig. 1). The $\mathrm{Mn}-\mathrm{O}$ distances vary from 2.13 (1) to 2.21 (2) \AA, the $\mathrm{Mn}-\mathrm{N}$ bond lengths are 2.21 (2) and 2.29 (2) \AA, in the normal range (Hauptmann et al., 2000; Deng et al., 2000; Ruiz et al., 2000). The $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{N}$ distances are comparable to those of complex (II). The o-phenanthroline rings lie approximately planar. The phenanthroline rings lay alternately in a head-totail manner (Fig. 2), forming a layer structure with a layer separation of $4.42 \AA$, which is larger than the sum of the van

Received 26 August 2003 Accepted 8 September 2003 Online 18 September 2003
der Waals radii of two C atoms (Bondi, 1964), implying that $\pi-$ π stacking interaction between the phen rings is not significant.

Hydrogen-bonding interactions were found between the water ligands and the nitrate ions (Table 1), with $\mathrm{O} \cdots \mathrm{O}$ distances ranging from 2.83 to $3.27 \AA$, linking interlayer and intralayer molecules to form two-dimensional sheets.

Experimental

The title complex was synthesized by mixing manganese nitrate tetrahydrate, 1,10-phenanthroline and benzoic acid in an ethanolwater solution. The resulting solution was heated at 353 K . After cooling to room temperature, the solution was filtered and the filtrate allowed to evaporate in the air for a few weeks, depositing light yellow crystals of the title compound.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$

$$
D_{x}=1.587 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=431.23$
Monoclinic, $C 2 / c$
$a=14.144$ (2) A
$b=10.6484$ (15) \AA
$c=12.2202$ (19) A
$\beta=101.356$ (3) ${ }^{\circ}$
$V=1804.5(5) \mathrm{A}^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 974
reflections
$\theta=2.4-25.0^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, light yellow
$0.16 \times 0.10 \times 0.08 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.909, T_{\max }=0.939$
2675 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.131$
$S=1.02$
1585 reflections
139 parameters

Figure 1
Structure of (I), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 30% probability level.

Figure 2
A packing diagram of the title compound.
(Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the State Key Basic Research and Development Plan (G1998010100) and NNSFC (No. 29733090 and 29973047).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-460.
Deng, R. M. K., Bilton, C., Dillon, K. B. \& Howard, J. A. K. (2000). Acta Cryst. C56, 142-145.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 171-172.
Law, N. A., Caudle, M. T. \& Pecoraro, V. L. (1999). Adv. Inorg. Chem. 46, 305440.

Ma, C.-B; Chen, F., Zhang, X.-F., Chen, C.-N \& Liu, Q.-T. (2002). Acta Cryst. C58, m401-m403.
Pecoraro, V. L. \& Butler, W. M. (1986). Acta Cryst. C42, 1151-1154.
Ruiz, R., Sangregorio, C., Caneschi, A., Rossi, P., Gaspar, A. B., Real, J. A. \& Munoz, M. C. (2000). Inorg. Chem. Commun. 3, 361-367.

metal-organic papers

Sheldrick G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). SAINT and SHELXTL (Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Zheng, Y.-Q., Lin, J.-L. \& Kong, Z.-P. (2000). Z. Kristallogr. New Cryst. Struct. 215, 531-532.

